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Abstract.  

Slope units are terrain partitions bounded by drainage and divide lines. They provide several advantages over 35 
gridded units in landslide-susceptibility modeling, such as better capturing terrain geometry, improved incorporation 
of geospatial landslide-occurrence data in different formats (e.g., point and polygon), and better accommodating the 
varying data accuracy and precision in landslide inventories. However, the use of slope units in regional (>100 km2) 
landslide susceptibility studies remains limited due, in part, to prohibitive computational costs and/or poor 
reproducibility with current delineation methods. We introduce a computationally efficient algorithm for the 40 
parameter-free delineation of slope units. The algorithm uses geomorphic scaling laws to define the appropriate 
scaling of the slope units representative of hillslope processes, avoiding the costly parameter optimization 
procedures of other slope unit delineation methods. We then demonstrate how slope units enable more robust 
regional-scale landslide susceptibility maps.  

Short summary 45 

Dividing landscapes into representative hillslopes greatly improves predictions of landslide potential across 
landscapes but requires vast computing power. Here, we present a new computer program that can efficiently divide 
landscapes into meaningful slope units. The results of this work will allow an improved understanding of landslide 
potential across different landscapes and can ultimately help reduce the impacts of landslides worldwide.  

1 Introduction 50 

Landslides cause substantial losses of life, infrastructure, and property every year across the world (Froude and 
Petley, 2018). One of the most common tools for mitigating these losses is landslide-susceptibility mapping, which 
provides information on the spatial patterns and likelihood of landslide occurrence. Data-driven statistical models 
are typically used for creating these maps due to their computational efficiency and the relative availability of data 
needed to develop and deploy these models (van Westen et al., 2008). Statistical models analyze the spatial 55 
distribution of known landslides in relation to local terrain conditions (e.g., slope, curvature, aspect), and other areas 
with similar conditions are identified as being susceptible to landslides. In essence, the models identify features in 
the terrain similar to known landslides as a measure of landslide susceptibility. As such, the quality of the landslide 
inventory used to develop the susceptibility model is paramount for creating reliable maps. However, inventories 
with accurate information on landslide positioning, extent, triggering mechanism, and type are unavailable in many 60 
parts of the world. More often, if an inventory exists at all, it consists of a compilation of landslide data collected at 
different scales, times, accuracies, and formats (e.g., polygons or points) with limited information on the landslide 
type or triggering mechanism (Mirus et al., 2020). Thus, a common problem in the landslide community is 
determining an effective way of assessing susceptibility, despite the imperfect data available. 

The foundation of any landslide susceptibility map is the mapping unit used to subdivide the terrain for 65 
susceptibility analysis. Grid cells (pixels) are the most used mapping unit, constituting about 86% of all publications 
on landslide susceptibility as of 2018 (Reichenbach et al., 2018). This is due largely to their ease in processing. 
However, grid-based mapping units have several major drawbacks. First, the grid cells have no physical relationship 
to landslide processes. Landslides occur at various spatial scales and manifest a large range of footprints not 
appropriately captured by grid cells. Second, variable scales of data that describe the local terrain conditions used to 70 
develop landslide susceptibility models (i.e., predictors or covariates) can lead to model biases. For example, the 
size of the grid cell can have major effects on the output of the landslide susceptibility model (Chang et al., 2019; 
Guzzetti et al., 1999; Catani et al., 2013). To mitigate these effects, some researchers suggest creating multiple 
models at different resolutions (e.g., Guzzetti et al., 1999). Third, landslide inventories are often mapped using a mix 
of formats (i.e., polygon and points). This requires modelers to standardize the data in some way (Zêzere et al., 75 
2017; Jacobs et al., 2020; Süzen and Doyuran, 2004; Zhu et al., 2017; Tanyas et al., 2019). For regional-scale (>100 
km2) models that use high-resolution (<100 m) rasters, this standardization is often implemented by sampling a 
single representative cell from within each landslide polygon (Qi et al., 2010; Gorum et al., 2011; Xu et al., 2014; 
Oliveira et al., 2015). Alternatively, some studies use lower resolution rasters (>100 m) and sampling all the cells 
that touch a landslide polygon or point (e.g., Nowicki et al., 2014).  80 
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Slope units alleviate many of the problems of grid mapping units and are based on drainage and divide lines that 
effectively segregate the terrain according to the hillslope processes that shaped it (Carrara, 1983; Guzzetti et al., 
1999). First, the slope units’ relationship with the natural terrain allows modelers to use an array of statistics of the 
predictors inside of the mapping unit (e.g., max, min, standard deviation). Second, the amalgamation of grid cells to 
create a slope unit provides a natural subset of the terrain that reduces the need for multiple raster resolutions for the 85 
susceptibility analysis (Jacobs et al., 2020). Third, slope units provide an alternative solution for the incorporation of 
landslide data in different formats. In contrast to the common grid-based standardization procedures, slope units 
allow modelers to study the characteristics of the whole hillslope(s) that experienced a landslide. Fourth, slope units 
are less sensitive to the effects of inaccurate landslide locations (Jacobs et al., 2020). Finally, although the use of 
slope units requires more processing at the beginning of the analysis, the limited number of mapping units enables 90 
the use of input data from every mapping unit, even over large regions. The representation of every mapping unit in 
the study area prevents the potential of sampling bias common when using grid mapping units (e.g., Oommen et al., 
2011; Petschko et al., 2013).  

Recognition of the advantages of slope units has led to many different methods for delineating them. However, the 
disadvantages of these methods include inhibiting computational costs, time-intensive manual cleaning and/or 95 
delineation, or indeterminate parameterizations. For example, the most rudimentary method for creating slope units 
is using watersheds to draw their boundaries (Carrara, 1988). A drawback of this approach is that the sizes of the 
slope units are determined by the user and the cleaning of artifacts which occur during the watershed delineation 
process can be highly labor intensive and difficult to reproduce. Computer-vision techniques (e.g., landform 
classification) have also been used to delineate slope units (Luo and Liu, 2018; Martinello et al., 2022; Zhao et al., 100 
2012; Cheng and Zhou, 2018) which overcome the reproducibility and labor issues of the manual delineation 
method. However, the scale of the slope units is still often arbitrarily set. The algorithm r.slopeunits developed by 
Alvioli et al. (2020, 2016) uses watershed delineations whose shape and dimensions are determined by the user or an 
iterative optimization procedure (i.e., a parameter sweep) that evaluates the algorithm’s outputs while using different 
input parameter values (see Alvioli et al., 2016, for details). Although the algorithm can avoid manual parameter 105 
assignments (i.e., parameter free), the computational expense of the parameter sweep is prohibitive for large areas. 
For example, Alvioli et al., (2020) summarizes a three-month process to delineate slope units based on a 25 m 
digital elevation model (DEM) for the country of Italy while omitting the flat regions (~24% of the total area) using 
a 64-core machine with 320 GB of memory. Additionally, the optimization procedure required for the parameter-
free delineation of slope units is not openly available. The limitations of all the current slope unit delineation 110 
methods prevents the widespread use of slope units in susceptibility modeling. 

The objective of this paper is to introduce Slope Unit Maker (SUMak), an open-source, slope-unit delineation tool 
that is computationally efficient and parameter-free and to demonstrate how slope-unit based susceptibility maps are 
generally a better mapping unit for regional (>100 km2) susceptibility analysis. SUMak leverages the watershed 
optimization algorithm available in the software package ‘Terrain Analysis Using Digital Elevation Models’ 115 
(TauDEM) (Tarboton, 2015) to determine the optimal scale of the watersheds for capturing hillslope processes. This 
optimization avoids the computationally inefficient parameter sweeps required by other parameter-free algorithms, 
making it markedly faster. To demonstrate the utility of SUMak, we divide this manuscript into two parts: 1) a 
comparison of our slope-unit results to those created using the r.slopeunits algorithm for the Island of Sicily (Italy), 
2) a demonstration of how slope units are generally a better mapping unit for regional susceptibility analysis due to 120 
the larger mapping units that align with the local terrain (slope units). In part two, we first show that slope units 
provide a conservative means of displaying the nebulous susceptibility model output caused by imprecise input data 
(e.g., no time component, imprecise locations, and/or variable formats). We do this by comparing landslide 
susceptibility map outputs from grid and slope unit-based maps in two watersheds in the state of Oregon (U.S.) 
which have inventory data mapped at a range of scales and formats. Next, we demonstrate the advantages of slope 125 
units for assessing event-based susceptibility using a landslide catalog from Hurricane Maria over the island of 
Puerto Rico (Hughes et al., 2019).  

2 Methods 

2.1 Slope unit delineation 
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To efficiently map slope units over a given terrain, we adapt tools from the software TauDEM (Tarboton, 2015) 130 
which determine the scale where the topography transitions from fluvial to hillslope processes using the constant 
drop law (Figure S1). The constant drop law states that the average drop in elevation along Strahler stream orders 
(Strahler, 1957) is constant (i.e., independent of order) at scales, or aerial extents, of the terrain controlled by fluvial 
processes. At sufficiently small scales, the constant drop law does not hold, indicating that hillslope processes are 
controlling the terrain morphology. The scale at which the constant drop law breaks is determined by applying a 135 
series of flow accumulation thresholds to the input DEM and finding the threshold where the mean stream drop of 
the first order streams is statistically different from the higher order streams, using a T-test (Davis, 2002). The 
stream accumulation threshold just below where the law breaks is then used to delineate the largest watersheds that 
capture the hillslope processes of that terrain. This scaling law is independent of the raster resolution (Tarboton et 
al., 1991; Tarboton, 1989) and provides a non-arbitrary scale for delineating slope units. We further process these 140 
optimally scaled watersheds by splitting them by the longest flow path within the watershed using GRASS (GRASS 
Development Team, 2020). Thus, the watersheds essentially become what would be objectively recognized as a 
slope. Further details on how the algorithm was implemented in R are in Text S1. 

To provide some insight on the validity and efficiency of our approach, we delineate slope units using SUMak for 
the island of Sicily (Italy) and compare our results with slope units delineated for the same area using the 145 
r.slopeunits algorithm (Alvioli et al., 2020). The same 25 m DEM (European Environmental Agency, 2016) is used 
in both delineation efforts. To evaluate the slope units produced from the two methods, we apply similar metrics 
used by Alvioli et al. (2020, 2016) to optimize their algorithm. These metrics aim to measure the internal 
homogeneity and external heterogeneity of the aspect values within the slope units using the area-normalized local 
variance (V) and the Moran spatial autocorrelation index (I), respectively (Moran, 1950). The area-normalized local 150 
variance is given by  

𝑉𝑉𝑖𝑖 =
𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖  
∑ 𝑠𝑠𝑖𝑖𝑖𝑖

,  

 

(1) 

where c is the circular variance of the aspect within slope unit i, and s is the slope unit’s surface area. The Moran 
spatial autocorrelation index was estimated using the r.object.spatialautocor addon in GRASS GIS (Lennert, 2021). 
The values for I range from -1 to 1 and indicate perfect anti-correlation or perfect correlation between the aspect 
values and slope unit position, respectively. Thus, lower values of V and I indicate higher internal homogeneity and 155 
external heterogeneity of the slope units. We limit our comparison to the algorithm of Alvioli et al. (2016, 2020) 
because it is the only other parameter-free slope unit delineation method we are aware of.  

2.2 Susceptibility maps 

Several papers have evaluated the relative effectiveness of slope units over grid mapping units in statistical landslide 
susceptibility models (Jacobs et al., 2020; Steger et al., 2017; Zêzere et al., 2017; Van Den Eeckhaut et al., 2009; 160 
Martinello et al., 2022). However, none of these studies has thoroughly evaluated the effectiveness of slope units for 
better displaying the nebulous susceptibility model output caused by inconsistent input data or their advantages in 
displaying event-based susceptibility maps. To demonstrate these benefits, we use the Middle Umpqua and 
Calapooia 10-digit hydrologic unit code (HUC) watersheds (U.S. Geological Survey, 2004) in the State of Oregon 
(U.S.) and the island of Puerto Rico which have areas of 257 km2, 743 km2, and 8,870 km2, respectively. The 165 
landslide data from the Oregon were collected over decades using a combination of 1-m DEM data and its 
derivatives, geologic maps, orthophotos, aerial photography, and field reconnaissance and consists of both point and 
polygon data (Burns and Madin, 2009). In this dataset, polygons cover the extent of the landslide affected area while 
points are placed at the centroid of the landslide affected areas. All data were reviewed for accuracy after their initial 
mapping. The areas of the individual landslides mapped using polygons are highly variable, spanning 2×106-4.4×106 170 
m2 and 1500 - 1.88x107 m2  in Umpqua and Calapooia, respectively. This data variability can lead to problems when 
using grid mapping units because the landslide data is standardized to a consistent format for the creation of the 
landslide susceptibility models. The Puerto Rico landslide dataset consists of point locations of the centers of 
landslide headscarps that occurred during Hurricane Maria on September 20-21, 2017 (Hughes et al., 2019). 
Headscarps were manually identified using high-resolution (15-50 cm), post-event imagery and quality checked by 175 
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three experienced supervisors. Thus, the Oregon watersheds and Puerto Rico datasets are used to demonstrate the 
benefits of slope units when using inconsistent and event-based input data, respectively.   

We evaluate four different methods of standardizing landslide polygons to points for grid-based susceptibility maps 
in the Oregon watersheds. Each method converts the polygons to input points that are combined with the landslides 
originally mapped as points. The first method converts the landslide polygons into a single point at the highest 180 
elevation cell within the polygon using a 10 m DEM from the US Geological Survey’s three-dimensional (3D) 
Elevation Program (3DEP) database (U.S. Geological Survey, 2019), which has a vertical root mean square error of 
0.82 (Stoker and Miller, 2022). In cases where there are multiple points, the highest elevation cell with the highest 
slope is selected. This sampling method is designed to capture the attributes nearest the landslide scarp and the 
conditions that led to failure (Zêzere et al., 2017; Süzen and Doyuran, 2004; Jacobs et al., 2020). The second method 185 
follows the same procedure but is conducted using the same 10 m DEM resampled to 30 m resolution using a 
bilinear interpolation method. The coarser raster may better average the landslide characteristics compared to the 
finer-resolution rasters. Third, we sample multiple random points from the 10 m DEM within the polygons with a 
200 m spacing, roughly halfway between the average radii of the landslide polygons from the two study sites (93 
and 386 m for Umpqua and Calapooia, respectively). Each landslide polygon is guaranteed at least one point. 190 
Creating multiple points within the polygons allows us to capture some of the variability in the landslides’ measured 
attributes. Finally, we sample a point within each polygon at the median elevation value using the 10m DEM. In the 
case of multiple points per polygon, we select the point with the highest slope. This data set is used to verify that the 
chosen statistics in the slope unit-based approach did not bias the results. We refer to these four sampling methods 
as “10m”, “30m”, “10m_multi”, and “10m_med”, respectively. For Puerto Rico, we only use the “30m” sampling 195 
method as that dataset is used to demonstrate the use of slope units for event-based landslide inventories rather than 
for inconsistent inventories. For all study sites, non-landslide data are randomly sampled from areas outside the 
landslide polygons and points buffered with a radius derived from the average area of the landslide polygons within 
each study area. For Puerto Rico, this radius is set to a value between the two Oregon mean polygon radii (100m).  
For grid-based maps, the sampling ratio of landslide and non-landslide points is set to 1:1, following the most 200 
common practice (Petschko et al., 2013; Reichenbach et al., 2018).  

Slope units for the study sites are delineated using the same 10 m DEM as the grid-based approaches. We note that 
slope units can be delineated with coarser resolution elevation data with a loss in precision. The sampling scheme 
for the slope unit-based maps is simpler than the grid-based schemes. Each slope unit in the study area is set to be 
either a landslide sample or non-landslide sample dependent upon the intersection of a landslide point or polygon 205 
within that slope unit. We use an overlap threshold of 0.1% (i.e., at least 0.1% of the slope unit is covered by a 
landslide polygon) for determining the positive presence of landslides within a given slope unit (Jacobs et al., 2020). 
For the slope unit-based maps, we train two different models. The first uses only the median value of the predictor 
data within the slope unit and the other uses the median and standard deviation (SD) of the predictor data.  

We created landslide susceptibility models using the logistic regression and XGBoost (Chen and Guestrin, 2016) 210 
machine learning algorithms. Logistic regression is the most commonly used algorithm for data-driven landslide 
susceptibility modeling (Reichenbach et al., 2018). It calculates the log odds (log(𝑃𝑃 1 − 𝑃𝑃⁄ ), where P is the 
probability) of a binary outcome given some predictor data (x) that describes the terrain. For M input predictors, 
logistic regression is expressed as follows: 

log �
𝑃𝑃

1 − 𝑃𝑃
� = 𝛽𝛽𝑜𝑜 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2+. . . +𝛽𝛽𝑀𝑀𝑥𝑥𝑀𝑀 . 

 

(2) 

The input data’s coefficients (𝛽𝛽) are fit to the input data using a maximum likelihood criterion. XGBoost 215 
(https://xgboost.readthedocs.io/) uses a gradient boosting decision tree algorithm that increases in complexity until 
the lowest model residuals are reached (Chen and Guestrin, 2016). This algorithm is fast, easy to implement, and has 
been shown to produce highly accurate susceptibility maps (Sahin, 2020). To increase the model accuracy while 
preventing overfitting, we optimize the ‘max_depth’, ‘min_child_weight’, ‘subsample’, ‘gamma’, and 
‘colsample_bytree’ parameters of XGBoost (see Chen & Guestrin, 2016 and https://xgboost.readthedocs.io/ for an 220 
explanation of these parameters) using a Bayesian cross-validation procedure on a random sampling of half of the 
landslide data (Snoek et al., 2012). For both algorithms, we limit the predictor variables to elevation, slope, aspect 
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(𝜙𝜙), roughness (standard deviation of the elevation using a 100 m square window), and curvature to illustrate the 
effectiveness of the different models using only widely available data. Aspect is measured using cos(𝜙𝜙 − 45°) to 
make it periodic and to account for variations in solar heat flux (McCune and Keon, 2002). As the Puerto Rico 225 
landslide dataset has a known trigger, we also include root zone soil moisture estimates from NASA’s Soil Moisture 
Active Passive (SMAP) mission on September 21, 2017. Bessette-Kirton et al. (2019) found the SMAP data to be a 
better predictor of landslide distributions from Hurricane Maria than other rainfall datasets. 
 
Importantly, the meaning of the models’ output probability is different depending on the sampling methods used. 230 
The single-cell methods (‘10m’, ‘30m’, ‘10m_med') measure the probability of a cell containing the high point 
(scarp) or center point of a landslide deposit recognized by the team(s) that compiled the landslide inventory. The 
multiple cell method (‘10m_multi’) is measuring the probability of a cell containing a landslide deposit recognized 
by the team(s) that compiled the landslide inventory. Lastly, the slope-unit based maps measure the probability of a 
slope unit containing a landslide. For each method, the probability is used as a measure of landslide susceptibility. 235 
 
We measure the accuracy of the susceptibility models using the area under the curve (AUC) of the receiver operator 
characteristics (ROC) and the Brier score (Brier, 1950). The ROC curve compares the true positive rate against the 
false-positive rate at various discrimination thresholds (see Oommen et al., 2011 for an overview). If every landslide 
and non-landslide from the data is modeled correctly, the AUC values of the ROC curve will be 1.0. In contrast, 240 
AUC values near 0.5 suggest the model classification is equivalent to random guessing. Values from 0.5-0.6, 0.6-
0.7, 0.7-0.8, 0.8-0.9, and 0.9-1.0 can be classified as poor, average, good, very good, and excellent performance, 
respectively (Yesilnacar, 2005). The Brier score (B) measures the mean-square error between the model predictions 
(i.e., probability, P) and observations (binary variable of landslide presence, O):  

𝐵𝐵 =
1
𝑁𝑁
�(𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

, 

 

(3) 

 245 

where N is the number of observations (Brier, 1950). Thus, a B value of zero suggests perfect model fit and a value 
of one indicates perfect misfit. In contrast to AUC-ROC, the Brier score provides measure of the scale of the model 
fit and not just its ordering. Both metrics together provide a comprehensive evaluation of the model results. 
Following Molinaro et al. (2005), we use a 10-fold cross-validation procedure with ten iterations to obtain 
representative distributions of the ROC-AUC and Brier score metrics. For the grid-based maps, the non-landslide 250 
points are randomly sampled for each iteration. Following common practice (e.g., Tanyu et al., 2021), final 
susceptibility maps were created using 70% of the available data to train on, and the remaining 30% of the data to 
test. 

 

3 Results 255 

3.1 Comparison with r.slopeunits 

Our slope unit algorithm produces comparable V and I values to r.slopeunits but is substantially faster. Figure 1 
shows the delineations of Alvioli et al. (2020) and SUMak for two sections of Sicily and shows the boxplots of the V 
distributions. The two algorithms produce some variations in the sizing of slope units due to the differences in the 
optimization procedures. SUMak and r.slopeunits produced a mean V value of 0.55 and 0.48, respectively but there 260 
is large overlap between their distributions (Figure 1c). SUMak and r.slopeunits also produced I values of 0.78 and 
0.77, respectively. In sum, these metrics indicate that the internal homogeneity and external heterogeneity of the 
slope units produced by SUMak are comparable to those produce using r.slopeunits which was specifically 
optimized to minimize these values. However, our algorithm delineated the entire island in 7.7 hours on a local 
desktop machine (16-core, 64 GB memory). As Sicily covers approximately 9% of Italy, it should take our 265 
algorithm about 3.2 days to process the same area that took Alvioli et al. (2020) three-months to delineate using four 
times the number of cores and five times the memory we used with SUMak.  
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Figure 1: (a,b) A comparison of slope unit delineations over two regions of Sicily, Italy from Alvioli et al. 
(2020) (blue lines) and SUMak (red lines). (c) Map showing the locations of a and b. (d) Boxplots of area-270 
normalized local variance (V) of the slope units produced from the two algorithms. The box hinges show the 
first and third quartiles; the whiskers extend to 1.5 times the inter-quartile range and the minima; and the 
horizonal bars show the median values of the distributions. The black triangles show the means of the 
distributions.  
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 275 

3.2 Susceptibility map comparison 

Comparison of the final susceptibility maps to the distribution of landslide deposits highlights several differences 
between the grid and slope unit-based maps. The SUMak delineated slope units, landslide inventories, and example 
of the grid sampling methods for the Oregon watersheds and Puerto Rico are in Figures 2 and 3, respectively. The 
slope units provide a division for landslides that enables the characterization of the entire slope(s) that experiences a 280 
failure (Figures 2e,f, and 3b). In contrast, the grid-based methods either minimize the entire landslide to a single 
representative point even for large (>1 km2) landslides or an array of points. Figures 4 and 5 show the final 
susceptibility maps of the Oregon watersheds and Puerto Rico, respectively, using the 30m sampling method for the 
grid-based maps and the slope unit-based maps using the median and SD predictor values with XGBoost. The other 
susceptibility maps are in Figures S6-S11. The slope unit maps generally better distinguish high and low 285 
susceptibility zones with less area displaying probabilities near 0.5. Cumulative distribution functions of the maps’ 
probabilities are shown in Figures S2 and S3. Additionally, the slope-unit based maps are more granular, which 
prevents the more localized variation in susceptibility present in the grid-based maps. This granularity generally 
results in a higher percent of study sites’ areas displaying higher probabilities (Figure S4-S5). We note that the 
difference in map granularity is less for Puerto Rico than for the Oregon watersheds, likely due to the scale of 290 
mapped area, 30 m mapping unit, and the density of the landslide points (Figure 3).  Finally, the different maps 
highlight similar locations within the watersheds as having a relatively high or low probabilities. The ROC-AUC 
and Brier score of the models used to make the final maps are shown as black dots in Figures 6 and 7.  
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Figure 2: Umpqua and Calapooia watersheds in Oregon. (a, b) slope unit delineations.  (c, d) digital elevation 295 
models and landslide inventories. Also shown are the log-normalized histograms of the landslide polygon 
areas. (e, f) zoomed-in portions of the slope unit maps with landslide polygons and grid sampled points using 
the four sampling techniques superimposed. The 10 m point samples often overlap the 30 m samples. 
Sampling techniques are described in section 2.2. 

 300 
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Figure 3: Island of Puerto Rico. (a) Slope unit delineation and mapped landslide points from Hurricane 
Maria. (b) Zoomed--in portion of the island. 
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Figure 4: Landslide susceptibility models from the 30m sampling method for the grid-based maps and using 305 
slope units with median and standard deviation predictor values (SU_medianSD) with XGBoost.  
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Figure 5: Puerto Rico landslide susceptibility models from the 30m grid-based maps and using slope units 
with median and standard deviation predictor values (SU_medianSD) with XGBoost. 

Both the ROC-AUC and Brier score metrics show a better model fit using slope units compared to any of the grid-310 
based models for our study sites (Figures 6 and 7). The XGBoost and Logistic regression machine learning 
algorithms show an increase in the median ROC-AUC and a decrease in the Brier scores for the slope unit-based 
maps. For example, at Calapooia, the XGBoost algorithm on the grid-based models showed AUC-ROC values that 
would qualify as very good model performance (average of 0.84), while the two slope-unit based models had 
excellent performance (average of 0.96). The Brier scores of the same models demonstrate an average root-mean-315 
square error of 0.17 and 0.07 for the grid-based and slope unit models, respectively. Using the median and SD of the 
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predictor values in each slope unit also increases the model performance compared to slope unit models developed 
with only the median predictor values. The different sampling techniques for the grid-based maps showed little 
variation in the two model performance metrics. Finally, XGBoost generally shows better model performance 
compared to logistic regression. In summary, the slope unit-based models can better differentiate susceptible and 320 
non-susceptible areas of the terrain.  

 

Figure 6: (a,b) Reciever operator characteristics (ROC)-area under the curve (AUC) and (c,d) Brier score 
boxplots from the 10-fold cross-validation procedure for landslide susceptibility models using the XGBoost 325 
(blue) and logistic regression (red) machine learning algorithms. The box hinges show the first and third 
quartiles; the whiskers extend to a maximum of 1.5 times the inter-quartile range; and the horizonal bars 
show the median values of the distributions. Distributions are for the different sampling methods (10m, 30m, 
10m_multi, 10m_med) and the slope unit (SU) maps using only the median (SU_medians) and the median and 
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standard deviation of the predictor values (SU_medianSD). The black dots show the scores of the final 330 
susceptibility maps.  

 

Figure 7: (a) ROC-AUC and (b) Brier score boxplots from the 10-fold cross-validation procedure for 
landslide susceptibility models using the XGBoost (blue) and logistic regression (red) machine learning 
algorithms for the Hurricane Maria landslide catalog in Puerto Rico. Symbology is the same as Figure 6. 335 

4 Discussion 

Our slope unit delineation algorithm SUMak has significant advantages over previous delineation methods. First, in 
contrast to other methods which use an optimization function or user-dictated setting for determining the appropriate 
scaling and positions of slope units, SUMak uses established geomorphic laws for determining an appropriate scale 
of the slope units to capture hillslope processes. Second, SUMak produces slope units with high aspect internal 340 
homogeneity and external heterogeneity between adjacent slope units which have been used in previous studies to 
measure the performance of a slope unit delineation algorithm (Alvioli et al., 2020, 2016). Lastly, SUMak is 
computationally efficient compared to other parameter-free algorithms. These advantages, coupled with it being 
open-source and easy-to-use, make it desirable for an array of geomorphic analyses.  

Our analysis highlights some of the benefits and drawbacks of using grids or slope units for landslide susceptibility 345 
modeling when using landslide data with variable formats and no temporal component. While both methods 
generally highlight the same areas as being more susceptible, the 30 and 10 m resolution grid mapping units used in 
this study produce maps with smaller scale variations in susceptibility. While this level of detail can be 
advantageous, the vague nature of the susceptibility models’ output caused by imprecise input data (e.g., no time 
component, imprecise locations, and variable formats) generally used to make susceptibility maps can cause 350 
misleading results. Indeed, producing high resolution (<100 m) grid-based maps is attempting to output results 
beyond the capacity of the input data. For example, in the Umpqua watershed, all the grid-based maps show only 
half of the terrain as having higher (P > 0.5) susceptibility (Figures S2). This may lead some to conclude that the 
watershed is generally not susceptible to landsliding. However, the abundance of the mapped landslides in the 
region (Figure 2e) indicate that most of the Umpqua watershed is highly prone to landsliding. This shortcoming of 355 
the grid-based maps is also reflected in the poorer model metrics (Figure 6). In contrast, the larger mapping units 
available through slope units allows for a more conservative map that, we argue, better captures the level of 
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susceptibility, even with imprecise input data. This is supported by the better model metrics (Figure 6) and a higher 
proportion of the Umpqua terrain as having higher susceptibility (Figures 4, S2, and S4). More conservative grid-
based maps are generally achieved using larger grid cells, which accentuates the unrealistic geometry of the cells 360 
and exacerbates the imprecise mapping of susceptible areas. Thus, slope units provide an effective mapping unit that 
accurately delineates the terrain into slopes that can be used to create conservative susceptibility maps that better 
accommodate the nebulous output of regional susceptibility models created with inconsistent input data. 

Slope units also provide a more conservative output for event-based landslide susceptibility maps that may be more 
effective at communicating the likelihood of future landslides over large regions. Like the maps created using non-365 
temporal landslide datasets, the grid-based susceptibility maps created for Puerto Rico show fine-scale variations in 
susceptibility that may be too precise to accurately reflect future landslide potential. Figure S12, shows a zoomed in 
portion of the model results and illustrates the diversity in probability values in the grid-based map compared to the 
slope unit map within a relatively small, mountainous terrain. The grid-based Puerto Rico susceptibility models are 
attempting to specify the pixel that contains the center of the head scarp. This level of precision may be too high and 370 
cause the model to miss future landslides that don’t occur at the same point as past landslides. In contrast, the slope 
unit maps characterize the susceptibility of the entire hillslope and thus provide a more conservative output that 
better predicts landslides that don’t occur in the exact location as previous failures. This difference in approach 
between the two mapping unit models is another reason why the slope-unit models perform better than grid-based 
models in our examples (Figures 6 and 7).  375 

Here we have focused on using slope units for statistical landslide susceptibility modeling; however, objectively 
divided terrain can be used in an array of geomorphic studies. For instance, slope units could improve other 
landslide studies such as physically based models, early warning systems, debris flow modeling, or hazard 
assessments. These studies often use grid-based analysis which suffer from some of the same drawbacks of grid-
based susceptibility modeling. Thus, adopting slope units as the mapping unit for these studies could yield more 380 
favorable results. Slope units could also help downscale topographically sensitive measurements (e.g., soil moisture, 
land cover, etc.) and provide a reasonable mapping unit for hydrologic and avalanche studies. Thus, SUMak could 
facilitate advances in geospatial analysis across several research areas beyond landslide susceptibility analysis. 

5 Conclusions 

The widespread use of slope units as the mapping unit of choice in landslide susceptibility studies has been limited 385 
partially due to the lack of an efficient and easy-to-use method for delineating them. Here we introduce a new 
parameter-free algorithm for the automatic delineation of slope units. The algorithm is relatively computationally 
efficient and can be implemented anywhere there is digital elevation data. We also demonstrate that landslide 
susceptibility maps created with slope units are more accurate and conservative compared to grid-based approaches. 
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